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When rotational components of ground motion produced by seismic surface waves are
computed, the phase velocities must always be dealt with in earthquake engineering. In this
paper, appropriate methods are presented to obtain the calculation formulas for the phase
velocities of surface waves by applying the theory of elastic wave propagation. Frequency
dispersion characteristics of phase velocities are discussed. The rocking component around
a horizontal axis and the torsional component around a vertical axis, which are generated,
respectively, by the Rayleigh and Love waves, are reasonably given. A procedure is
developed to calculate the time histories of these rotational components.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

In the absence of having good records of rotational components of earthquake motion, the
attempts have been made to define them in terms of the recorded translational
components. Several studies [1–4] have shown the importance of rotational components
in the seismic analysis and design of structures. It was shown [5] that during an
earthquake, even symmetric structures could be expected to undergo substantial torsional
excitation. The seismic design codes also prescribe ‘‘accidental eccentricity’’ in the design
force calculations to explain the unknown torsional inputs and unintended eccentricity in
the design of a building. However, no such provisions are made to account for the rocking
components that can have a significant impact on the design of tall and rigid structures.
One of the reasons why this input is not explicitly taken into account in the seismic design
codes is the lack of reliable information on torsional ground spectra [6, 7]. Newmark [8]
was perhaps the first researcher to establish a simple relationship between the torsional
and translational components of a motion. It was based on the assumption of a constant
velocity of wave propagation. Newmark’s idea was pursued further by other investigators
who proposed procedures to obtain the seismic torsional response spectra from the time
history records of horizontal components. Hart et al. [9] differentiated numerically two
orthogonal translational records and obtained the associated free-field rotational motion.
A similar technique was implemented by Nathan and MacKenzie [10] to generate the
record of the torsional ground motion from the two components of the El Centro
earthquake. When available, the acceleration time histories recorded by strong motion
differential arrays can be used to generate rotational components by numerical
differentiation of translational components. This technique was used by Niazi [11] to
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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estimate the torsional and rocking induced by differential displacements on long rigid
foundations and by Oliveira and Bolt [12] to estimate the rotational components from five
earthquakes recorded at the circular array in Taiwan, SMART-1.

The torsional ground motion response spectra have been developed by Tso and Hsu [13]
and Rutenberg and Heidebrecht [14, 15]. The relation between the rotational power
spectrum and the cross-correlation of vertical accelerations was studied by Castellani and
Zembaty [16]. For the input motion considered by these investigators, these spectra had a
flat peak in the periods of around 0.2–0.6 s. These periods’ ranges have special significance
for some high-frequency structures, such as medium height structures, stiff structures such
as nuclear safety shell and structures with eccentric layouts likely to be affected by
torsional base input.

Although it was used by several authors, the assumption of constant plane wave velocity
of propagation made for calculating the rotational components time histories from the
translational components is hard to justify. This velocity depends upon the frequency of
the wave motion and the angle of incidence. More rational procedures have been
developed by Trifunac [17], Lee and Trifunac [18, 19], Castellani and Boffi [20, 21], where
the requirement of a constant plane wave velocity of propagation was relaxed and the
dispersion and transient arrival times of waves in an elastic half-space were considered.
However, these methods still assume that the angle of incidence is fixed and known. The
angle of incidence also depends upon the frequencies of the impinging harmonics of the
ground motion. For correct calculation of the rotational components from the
corresponding translational components, this dependence of the angle of incidence as
well as the velocity of propagation of the wave on the frequency of the harmonics
constituting the ground motion at a site have been considered [22, 23].

Nevertheless, the studies mentioned above are only concerned with the cases of body
waves of seismic motion. The surface waves (Rayleigh and Love waves) will be
predominant in the composition of ground motion of earthquake when the site is
relatively far field from seismic source. Although researchers [18, 19, 24] have explored the
approach obtaining the rotational components from seismic surface waves, the effects of
upper soil layers and frequency dispersion on the rotations have not been considered. In
this paper, an appropriate method to include these effects is presented. The proposed
procedure allows one to apply the contributions of the Rayleigh and Love waves to
calculate time histories of the rotational component.

2. ROTATIONAL COMPONENTS FROM SURFACE WAVE

There are some wave functions satisfying the wave propagation equation and its
boundary conditions except the body wave. These waves, which propagate along medium
surfaces, are referred to as surface waves. In 1887, Lord Rayleigh mathematically derived
the possibility of a combination of P and S waves that decreased in energy as they went
deeper below the surface of an elastic half-space. It was later confirmed that the waves
with characteristics Rayleigh had predicted did indeed exist among seismic waves. In 1911,
A. E. H. Love predicted the existence of surface waves in mathematics whose motion was
horizontal while the direction of their vibration was perpendicular to the direction of their
propagation. The L phase in seismic waves approximated such characteristics and was
called Love waves. Till date, researchers in engineering seismology have agreed that there
are not only body wave (P and S waves) but also surface wave (Rayleigh and Love waves)
in the components of seismic waves. In case of farfield source of earthquake, the surface
waves are more probably dominant.
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Assume that the medium of seismic wave propagation is homogeneous, isotropic and
elastic half-space with multiple layers. The x-, y- and z-axis in coordinate system stand,
respectively, for two horizontal axes and a vertical axis. In this section, the calculational
formulations of seismic rotations obtained from the Rayleigh and Love waves are given
according to the elastic wave propagation theory.

2.1. CASE OF RAYLEIGH WAVE

Figure 1 shows the case of Rayleigh wave propagation in soil layer, in which u; w and
jgy are the horizontal, vertical and rocking components of earthquake motions,
respectively, and r denotes the density of medium. Using Lame potentials jðx; z; tÞ and
cðx; z; tÞ; the Rayleigh waves in the top layer are given by

jðx; z; tÞ ¼ A expð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
Þz exp iðax � otÞ; ð1aÞ

cðx; z; tÞ ¼ B expð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k02

p
Þz exp iðax � otÞ; ð1bÞ

where k ¼ o=a; k0 ¼ o=b; a ¼ o=VR; VR is the phase velocity in the x direction; a and b
are the velocities of P and S waves; and A and B are the amplitudes to be determined.

Thus, the two components of displacement can be expressed as

u ¼ @j
@x

þ @c
@z

ð2aÞ

and

w ¼ @j
@z

� @c
@x

: ð2bÞ

Substituting equation (1) in equation (2), one may obtain

u ¼ ½Aia expð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
Þz � B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k02

p
expð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k02

p
Þz	exp iðax � otÞ; ð3aÞ

w ¼ �½A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
expð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
Þz þ Bia expð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k02

p
Þz	exp iðax � otÞ: ð3bÞ

The boundary condition of shear stress at the free surface is

txzjz¼0¼
@w

@x
þ @u

@z

� �
z¼0

¼ 0 ð4Þ
Figure 1. Rocking component from the Rayleigh wave.
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according to the elastic theory [23], the rocking component around the y-axis is derived as
follows:

jgy ¼ 1

2

@w

@x
� @u

@z

� �
¼ @w

@x
: ð5Þ

Furthermore, equation (5) using equation (3b) is expressed as

jgy ¼ @w

@x

¼ �ia½A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
expð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
Þz þ Bia expð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k02

p
Þz	exp iðax � otÞ

¼ iaw ¼ i
o

VR

w: ð6Þ

2.2. CASE OF LOVEWAVE

When there is a low-velocity wave soil layer above the elastic half-space, the Love waves
may be generated in the topsoil layer and between two-layer media. These waves consist of
SH-type waves trapped in each layer that propagate by multiple reflections within each
layer. Actually, the Love waves may produce the seismic torsional component, jgz; around
the vertical axis except that the rocking component around a horizontal axis comes from
the Rayleigh wave. Figure 2 shows the case of the Love wave propagation in the soil layer,
in which v is the horizontal component perpendicular to the wave propagation direction
resulting from the Love wave.

Let Vs1 and Vs2 be shear wave velocities in the top and second soil layers with Vs1 > Vs2 ;
H be the depth of the top layer and l1; m1; l2; m2 be Lame factors of the top and second
layers. Thus, the Love waves in the two-layer media are expressed by

v1ðx; z; tÞ ¼ ½A cosðpzÞ þ B sinðpzÞ	exp iðax � otÞ ð�H5z50Þ; ð7aÞ

v2ðx; z; tÞ ¼ C expð�bzÞexp iðax � otÞ ð05zÞ; ð7bÞ

where p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
1 � a2

q
; b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

2

q
; k1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2=V2

s1

q
; k2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2=V2

s2

q
; a ¼ o=VL; VL is the

phase velocity of Love wave, and A; B and C are the amplitudes to be determined.
Figure 2. Torsional component from the Love wave.
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The Love wave only produces the displacement in the y direction while displacements in
the x and z directions are both zero if it propagates along the x direction due to the surface
wave of SH type, i.e., u ¼ w ¼ 0: thus, the torsional component around vertical axis z is
given by Li et al. [23].

jgz ¼ 1

2

@v1

@x
� @u1

@y

� �

¼ 1

2

@v1

@x

¼ 1

2
ia½A cosðpzÞ þ B sinðpzÞ	exp iðax � otÞ

¼ 1

2
iav1 ¼

1

2

io
VL

v1: ð8Þ

Equations (6) and (8) give the relations between rotational components and
translational components of seismic motion.

3. PHASE VELOCITIES WITH FREQUENCY DISPERSION

3.1. RAYLEIGH WAVE

Researchers [18, 19, 24] have investigated the propagating law of the Rayleigh wave at
the surface of elastic half-space and presented the corresponding formulas without
frequency dispersion. However, on the other side, it has been shown [25, 26] that the
frequent dispersion comes into being as the Rayleigh wave travels in the non-
homogeneous and layered media. Actually, the media in which the seismic wave
propagates are not ideally elastic at all. The phase velocity of the Rayleigh wave varies
with change of frequency in the topsoil layer above the elastic media.

Assume that there is a soil layer on the elastic half-space. Mass density of the layer is r:
Due to the presence of soil layer, the boundary conditions become

sZZjZ¼0¼ lyþ 2m
@w

@z

� �����
z¼0

¼ r
@2w

@t2
; ð9Þ

tZX jZ¼0¼ m
@u

@z
þ @w

@x

� �����
z¼0

¼ 0; ð10Þ

where l and m is the Lame factors; and y ¼ @u=@x þ @v=@y þ @w=@z:
Let

K ¼ a
b
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ 2m

m

s
: ð11Þ

Substituting equation (11) into equation (9), one obtains

sZZjZ¼0¼ mK2 @w

@z
þ mðK2 � 2Þ @u

@x
¼ r

@2w

@t2
: ð12Þ

Thus, equations (10) and (12) compose new stress boundary conditions. Thereafter,
substituting equation (3b) in two sides of the normal stress condition equation (12) at the
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free surface (z ¼ 0):

szzjz¼0¼f�mK2½�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
expð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
Þz

� Bia
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k02

p
expð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k02

p
Þz	exp iðax � otÞ

þ miaðK2 � 2Þ½Aia expð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
Þz

� B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k02

p
expð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k02

p
Þz	exp iðax � otÞgjz¼0

¼ f�mK2½�ða2 � k2ÞA � Bia
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k02

p
	

þ miaðK2 � 2Þ½Aia � B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k02

p
	gexp iðax � otÞ ð13Þ

and

r
@2w

@t2

����
z¼0

¼ fro2½A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
expð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
Þz þ Bia expð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k02

p
Þz	exp iðax � otÞgjz¼0

¼ ro2½A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
þ Bia	exp iðax � otÞ; ð14Þ

one can obtain

ð2ma2 � mK2k2 � ro2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
ÞA þ ð2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k02

p
� ro2ÞaBi ¼ 0: ð15Þ

Similarly, substitution of equation (3) in the shear stress condition equation (10) at the
free surface (z ¼ 0) gives

m
@u

@z
þ @w

@x

� �����
z¼0

¼ fm½Aiað�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
Þexpð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
Þz

þ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k02

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k

02
p

expð�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k02

p
Þz	exp iðax � otÞ

� ia½A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
expð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
Þz þ Bia expð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k02

p
Þz	exp i ax � otð Þgjz¼0

¼ m½�2Aia
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
þ ð2a2 � k02ÞB	exp iðax � otÞ

¼ 0: ð16Þ

After simplifying, equation (16) reduces to

�2ia
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
A þ ð2a2 � k02ÞB ¼ 0: ð17Þ

If their solutions are true and non-zero for arbitrary values of coefficients A and B in
combination of equations (15) and (17), the determinant of their coefficients must be equal
to zero:

2ma2 � mK2k2 � ro2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
ið2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k02

p
� ro2Þa

�2ia
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
2a2 � k02

�����
����� ¼ 0; ð18Þ

which can be expanded to

ð2ma2 � mk02 � ro2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
Þð2a2 � k02Þ � 2a2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k2

p
ð2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � k02

p
� ro2Þ ¼ 0; ð19Þ

Let k ¼ k1; k0 ¼ k2; k0=k ¼ k2=k1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ 2mÞ=m

p
¼ K ; then k2 ¼ Kk1: Equation (19) is

rewritten as follows:

4ma4 � 4ma2o
2

b2
þ m

o4

b4
þ go4

b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � o2

a2

s
� 4ma2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � o2

a2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � o2

b2

s
¼ 0: ð20Þ

The factor a can be solved from equation (20). It is known that a will be a function of
frequency o: And then the phase velocity, VR ¼ o=a; will also be a function of frequency
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Figure 3. Phase velocity of Rayleigh wave versus frequency.
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o: Figure 3 shows the variation of phase velocity of the Rayleigh waves with the
frequency, in which Vs is shear wave velocity in the upper soil layer and chosen as 140, 260
and 500m/s, respectively, standing for soft, medium and solid soils. It can be seen from
these figures that the VR decreases almost linearly with the increase of frequency and
decreases faster when the soil density, r; is larger.

3.2. LOVE WAVE

The stress and displacement boundary conditions should be continuous due to the
existence of the Love waves between two-layer media and the stress boundary condition at
free surface is zero, i.e.,

Stress continuum : m1

@v1

@z

����
z¼0

¼ m2

@v2

@z

����
z¼0

; ð21Þ

Displacement continuum : v1jz¼0¼ v2jz¼0: ð22Þ

Free surface : m1

@v1

@z

����
z¼�D

¼ 0: ð23Þ
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Substitution of equation (7) into equation (21) gives

m1

@v1

@z
¼ m1½�Ap sinðpzÞ þ Bp cosðpzÞ	exp iðax � otÞjz¼0

¼ m1pB exp iðax � otÞ ¼ m2

@v2

@z

¼ m2ð�bÞC expð�bzÞ exp iðax � otÞjz¼0

¼ �bCm2 exp iðax � otÞ: ð24Þ

Therefore,

m1pB exp iðax � otÞ ¼ �bCm2 exp iðax � otÞ: ð25Þ

By simplification, the equation (25) reduces to

m1pB þ bCm2 ¼ 0: ð26Þ

Using equation (22) with equation (7) gives

½A cosðpzÞ þ B sinðpzÞ	exp iðax � otÞjz¼0 ¼ C expð�bzÞexp iðax � otÞjz¼0 ð27Þ

so that

A � C ¼ 0: ð28Þ

Furthermore, substitution of equation (7a) in the stress boundary condition equation
(23) yields

A sinðDpÞ þ B cosðDpÞ ¼ 0; ð29Þ

from

m1

@v1

@z

����
z¼�D

¼ m1½�Ap sinðpzÞ þ Bp cosðpzÞ	exp iðax � otÞjz¼�D ¼ 0: ð30Þ

By combination of equations (26), (28) and (29), one can obtain

m1p sinðDpÞ ¼ m2b cosðDpÞ: ð31Þ

By use of the definitions of p and b; equation (31) is expressed as

m1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

V 2
S1

� 1

V 2
L

s
sin Do

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

V2
S1

� 1

V 2
L

s !
� m2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

V2
L

� 1

V 2
S2

s
cos Do

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

V2
S1

� 1

V 2
L

s !
¼ 0: ð32Þ

Thus, the phase velocity, VL; of the Love wave with the variation of frequency can be
obtained from equation (32). Figure 4 presents the phase velocity of the Love waves versus
the frequency, in which the shear wave velocity, Vs1 ; of the first soil layer is always selected
to be less than the shear wave velocity, Vs2 ; of the second soil layer. It can be noted that:

(1) the phase velocity, VL; reduces non-linearly with the increase of frequency, but tends
towards a constant in all cases when the frequency is more than a certain value;

(2) the larger the difference between the shear wave velocities of first and second soil
layers is, the faster the phase velocity, VL; drops;

(3) the thicker the upper (first) soil layer is, the faster the phase velocity, VL; decreases
according to the Figure 4.

4. NUMERICAL RESULTS

For illustrations, a set of three translational components of seismic records measured
from Landers Earthquake on June 28, 1992, which is farfield source of earthquake, with
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Figure 4. Phase velocity of Love wave versus frequency.
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an epicentral distance of more than 100 km, has been used to obtain the time histories for
the corresponding rotational components. They are approximately regarded as
predominant composition with the surface waves, i.e., Rayleigh and Love waves. The
time histories of the three translational components and their respective power spectra are
shown in Figures 5 and 6, in which the NS Comp., EW Comp. and UD Comp. represent
the north–south, east–west and up–down components of ground motion respectively. The
calculation procedure to obtain the rotational components is proposed in the following:

The time histories and their corresponding power spectra of rocking and torsional
components, obtained by the above process, are shown in Figures 7 and 8. During the
calculation of rocking component, the factor, a; is firstly solved from equation (20)
according to the selected seismic record and then the phase velocity, VR ¼ o=a; is
obtained. Thus, the rocking component can be obtained by substituting VR in equation
(6). On the computation of torsional component, the first thing is to calculate the phase
velocity, VL; from equation (32). And then the torsional component is obtained by
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Figure 4. Continued.
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Figure 5. Time histories of translational accelerations (Landers No. 32075).

H.-N. LI ET AL.824



0 5 10 15 20 25
0

20

40

60

80

100

120

140

NS Comp.

N
S

A
cc

e
le

ra
tio

n
S

pe
c

tr
u

m

0 5 10 15 20 25
0

20

40

60

80

100

120

EW Comp.

E
W

 A
cc

el
er

at
io

n 
S

pe
ct

ru
m

 

0 5 10 15 20 25
0

5

10

15

20

UD Comp.

U
D

 A
cc

el
er

at
io

n 
S

pe
ct

ru
m

Frequency (Hz) Frequency (Hz)

Frequency (Hz)

Figure 6. Power spectra of translational accelerations (Landers No. 32075).
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Figure 7. Time histories of rotational accelerations (Landers No. 32075).
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substituting VL in equation (8). The power spectrum represents the energy distribution of a
time history. The comparison of these rotational component spectra with the spectra of
translational components has shown that rotational spectra have more energy in the high-
frequency range because the power spectral values of two horizontal components are
almost equal to zero at the frequencies more than 8Hz and the power spectral values of
vertical component is very little at the frequencies more than 10Hz, while the rotational
spectra are still rich even more than 10Hz. These also show that the rotational spectra
attenuate slower than the translational spectra as the spectral components.
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Figure 8. Power spectra of rotational accelerations (Landers No. 32075).
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5. CONCLUSION

The need for providing the resistance to torsion in buildings subjected to seismic ground
motion, in addition to the computed effects of asymmetry, has been traditionally
recognized by code provisions through the stipulation of the so-called ‘‘accidental
eccentricity’’, which is typically taken as 5% of the bigger plan dimension of the building.
This judgment actually accounted for two portions: the discrepancies between the
computed and as-built stiffness features of lateral load-resisting members and seismic
rotational motions. As the rotational records have not as yet been measured directly for
engineering application, the reasonable methods [22, 23] have been given to make it
possible for the estimation of this effect on buildings to the rotational inputs of earthquake
caused by the arrival of body waves in the case of nearfield source.

In this paper, the appropriate methods are presented to obtain the rotational
components caused by the arrival of the surface waves, i.e., the Rayleigh and Love
waves, in the case of relative farfield seismic ground motions, which continues the authors’
previous work. The rocking component around a horizontal axis and the torsional
component around a vertical axis are generated, respectively, by the Rayleigh and Love
waves. At the same time, the calculation formulations of phase velocities about these
waves with frequency dispersion are derived. A procedure is developed to compute the
time histories of seismic rotational motions. Furthermore, numerical results have shown
that the rotational motions have more energy than the translatonal motions in high-
frequency range.
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